Title: SCION: Scalability, Control, and Isolation On Next-Generation Networks
Time: August 6, 2012 10:00 AM-11:00AM
Place: 5407 Software Building
BY Prof. Adrian Perrig
Abstract:
We present the first Internet architecture designed to provide route control, failure isolation, and explicit trust information for end-to-end communications. SCION separates ASes into groups of independent routing sub-planes, called trust domains, which then interconnect to form complete routes. Trust domains provide natural isolation of routing failures and human misconfiguration, give endpoints strong control for both inbound and outbound traffic, provide meaningful and enforceable trust, and enable scalable routing updates with high path freshness. As a result, our architecture provides strong resilience and security properties as an intrinsic consequence of good design principles, avoiding piecemeal add-on protocols as security patches. Meanwhile, SCION only assumes that a few top-tier ISPs in the trust domain are trusted for providing reliable end-to-end communications, thus achieving a small Trusted Computing Base. Both our security analysis and evaluation results show that SCION naturally prevents numerous attacks and provides a high level of resilience, scalability, control, and isolation.
Bio:
Adrian Perrig is a Professor in Electrical and Computer Engineering, Engineering and Public Policy, and Computer Science at Carnegie Mellon University. Adrian serves as the technical director for Carnegie Mellon’s Cybersecurity Laboratory (CyLab). He earned his Ph.D. degree in Computer Science from Carnegie Mellon University, and spent three years during his Ph.D. degree at the University of California at Berkeley. He received his B.Sc. degree in Computer Engineering from the Swiss Federal Institute of Technology in Lausanne (EPFL). Adrian’s research revolves around building secure systems and includes network security, trustworthy computing and security for social networks. More specifically, he is interested in trust establishment, trustworthy code execution in the presence of malware, and how to design secure next-generation networks. More information about his research is available on “adrian” web page. He is a recipient of the NSF CAREER award in 2004, IBM faculty fellowships in 2004 and 2005, the Sloan research fellowship in 2006, the Security 7 award in the category of education by the Information Security Magazine in 2009, and the Benjamin Richard Teare teaching award in 2011.